Files
modal-examples/11_notebooks/basic.ipynb
Andrew Hinh 2ff876d56b Make Modal app naming consistent (#1310)
* make app naming consistent

* update ref; ignore misc

* fix name errors
2025-08-01 16:17:44 -07:00

168 lines
4.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade modal\n",
"%pip install ipywidgets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import modal\n",
"\n",
"assert modal.__version__ > \"0.49.0\"\n",
"modal.__version__"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"app = modal.App(name=\"example-basic\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Handling standard Python functions\n",
"\n",
"Standard Python functions can of course be defined in a notebook and used on their own or be called within Modal functions.\n",
"Below the `double` function is defined in pure-Python, and called once locally."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def double(x: int) -> int:\n",
" return x + x\n",
"\n",
"\n",
"double(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Handling Modal Functions\n",
"\n",
"If we wanted to run this trivial doubling function *in the cloud* we can write another function `double_with_modal` and decorate it with `@app.function` to register\n",
"the function with the Modal app.\n",
"\n",
"To demonstrate that Modal functions you define in the notebook can be called by _other_ Modal functions, there's another function, `quadruple`, which uses `double` and `double_with_modal`.\n",
"For numbers greater than 1 million, this function spins up containers that run in Modal, which is a _very_ inefficient way to multiply a number by four, but you can do it if you please!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"@app.function()\n",
"def double_with_modal(x: int) -> int:\n",
" return x + x\n",
"\n",
"\n",
"@app.function()\n",
"def quadruple(x: int) -> int:\n",
" if x <= 1_000_000:\n",
" return double(x) + double(x)\n",
" else:\n",
" return double_with_modal.remote(x) + double_with_modal.remote(x)\n",
"\n",
"\n",
"with app.run():\n",
" print(quadruple.local(100)) # running locally\n",
" print(quadruple.remote(100)) # run remotely\n",
" print(\"Doing a very inefficient remote multiplication just for fun!\")\n",
" result = quadruple.remote(10_000_000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Evaluate the result created in above cell\n",
"result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### GPU-powered notebook cells!\n",
"\n",
"Thanks to Modal's remote execution capabilities, your notebook can be running on your laptop or a cheap CPU-only instance and take advantage of serverless GPU container execution. Here's the basics."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Define a Modal function with a GPU attached.\n",
"@app.function(gpu=\"any\")\n",
"def hello_gpu():\n",
" import subprocess\n",
"\n",
" subprocess.run(\"nvidia-smi\", shell=True, check=True)\n",
" return \"hello from a remote GPU!\"\n",
"\n",
"\n",
"# Start and run an ephemeral modal.App and execute the GPU-powered modal Function!\n",
"with app.run():\n",
" result = hello_gpu.remote()\n",
" assert result == \"hello from a remote GPU!\"\n",
"\n",
"# After the app is finished you can continue executing other function's defined in your notebook and\n",
"# use the results of your GPU functions!\n",
"\"This is the remote GPU's return value: \" + result"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
},
"vscode": {
"interpreter": {
"hash": "41aa4f5b72d46326b95133582f60c55f8bcca2a8619d8a82d21027f6cbc11af9"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}