Compare commits
7 Commits
6d07690e53
...
20d8872930
Author | SHA1 | Date | |
---|---|---|---|
20d8872930 | |||
4f65f39bbe | |||
ba78f9242d | |||
d9192ef9fb | |||
35979f6ea3 | |||
c8e2f9b694 | |||
3cacbda492 |
19
.gitignore
vendored
19
.gitignore
vendored
@@ -27,8 +27,27 @@
|
||||
*.a
|
||||
*.lib
|
||||
|
||||
# Build results
|
||||
[Dd]ebug/
|
||||
[Dd]ebugPublic/
|
||||
[Rr]elease/
|
||||
[Rr]eleases/
|
||||
x64/
|
||||
x86/
|
||||
[Ww][Ii][Nn]32/
|
||||
[Aa][Rr][Mm]/
|
||||
[Aa][Rr][Mm]64/
|
||||
bld/
|
||||
[Bb]in/
|
||||
[Oo]bj/
|
||||
[Ll]og/
|
||||
[Ll]ogs/
|
||||
out/
|
||||
build/
|
||||
|
||||
# Executables
|
||||
*.exe
|
||||
*.out
|
||||
*.app
|
||||
|
||||
.vscode/*
|
||||
|
30
CMakeLists.txt
Normal file
30
CMakeLists.txt
Normal file
@@ -0,0 +1,30 @@
|
||||
cmake_minimum_required(VERSION 3.18)
|
||||
project(TV_Denoising_CUDA)
|
||||
|
||||
# Find CUDA
|
||||
enable_language(CUDA)
|
||||
|
||||
# Find OpenCV
|
||||
set(VCPKG_INSTALLED_DIR "E:/programming/vcpkg/installed")
|
||||
set(OpenCV_DIR "${VCPKG_INSTALLED_DIR}/x64-windows/share/opencv2")
|
||||
find_package(OpenCV REQUIRED)
|
||||
|
||||
# Set CUDA flags and properties
|
||||
set(CUDA_SEPARABLE_COMPILATION ON)
|
||||
set(CUDA_PROPAGATE_HOST_FLAGS OFF)
|
||||
|
||||
# Add the CUDA source files
|
||||
file(GLOB CUDA_SOURCE_FILES "src/*.cu")
|
||||
set_source_files_properties(${CUDA_SOURCE_FILES} PROPERTIES CUDA_SOURCE_PROPERTY_FORMAT OBJ)
|
||||
|
||||
# Add the C++ source files
|
||||
file(GLOB CPP_SOURCE_FILES "src/*.cpp")
|
||||
|
||||
# Set the include directories
|
||||
include_directories(${OpenCV_DIR} ${CUDA_INCLUDE_DIRS} "include")
|
||||
|
||||
# Create the executable
|
||||
add_executable(TV_Denoising_CUDA ${CPP_SOURCE_FILES} ${CUDA_SOURCE_FILES})
|
||||
|
||||
# Link CUDA libraries
|
||||
target_link_libraries(TV_Denoising_CUDA ${CUDA_LIBRARIES})
|
29
README.md
29
README.md
@@ -1,3 +1,30 @@
|
||||
# tv-image-denoising
|
||||
|
||||
Using the TV algorithm to denoise images with c++ and cuda.
|
||||
Using the TV algorithm to denoise images with c++ and cuda.
|
||||
|
||||
## Requirements
|
||||
g++
|
||||
vcpkg
|
||||
cmake
|
||||
opencv2
|
||||
cuda
|
||||
## Build
|
||||
```bash
|
||||
# Generate build files
|
||||
cmake -B build .
|
||||
# Build
|
||||
cmake --build build
|
||||
```
|
||||
## Run
|
||||
```bash
|
||||
./TV_Denoising_CUDA <input_image> <output_image> <lambda> <iterations>
|
||||
```
|
||||
|
||||
## Original Exercise:
|
||||
7. Image denoising (up to 50+10+20=80%+)
|
||||
- [x] Use and implement a total variation image denoising method for the GPU. The input should be a noisy image, processed on the GPU by solving the energy minimization problem, then the output image should be displayed or saved to the disk. (50%)
|
||||
|
||||
- [ ] You can gain extra points for providing a simple GUI that allows the user to tune the parameters of the denoising algorithm, and immediately display the results! (+10%)
|
||||
|
||||
- [ ] Additional extra points can be achieved by also submitting a comparative evaluation of yours and other denoising techniques, applied to various inputs. I.e., use metrics such as SSIM, NCC, MAD, etc. to compare results to ground truth images. (+20%)
|
||||
(Plus points: The more techniques you compare or the better quality that your figures,charts & diagrams are, you may be rewarded by further extra points.)
|
||||
|
12
include/tv_denoising.hpp
Normal file
12
include/tv_denoising.hpp
Normal file
@@ -0,0 +1,12 @@
|
||||
/*
|
||||
Author: Vargha Csongor Csaba
|
||||
Created: 2023-06-25 10:23:33
|
||||
*/
|
||||
#ifndef TV_DENOISING_H
|
||||
#define TV_DENOISING_H
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
extern "C" void TVDenoising(cv::Mat& image, float lambda, int maxIterations);
|
||||
|
||||
#endif // TV_DENOISING_H
|
61
src/main.cpp
Normal file
61
src/main.cpp
Normal file
@@ -0,0 +1,61 @@
|
||||
/*
|
||||
Author: Vargha Csongor Csaba
|
||||
Created: 2023-06-25 10:10:13
|
||||
|
||||
Description:
|
||||
This file contains the main function for the TV image denoising cli tool.
|
||||
It reads an image file, denoises it using the TV denoising algorithm,
|
||||
and saves the denoised image to a file.
|
||||
You can run it with the following command:
|
||||
./TV_Denoising_CUDA <input_image> <output_image> <lambda> <iterations>
|
||||
where:
|
||||
- <input_image> is the path to the input image file you want to denoise.
|
||||
- <output_image> is the path to the output denoised image file.
|
||||
- <lambda> is the regularization parameter for TV denoising (optional, default: 0.02).
|
||||
- <iterations> is the number of iterations for TV denoising (optional, default: 10).
|
||||
*/
|
||||
#include <iostream>
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include "tv_denoising.hpp"
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
// Check if the required arguments are provided
|
||||
if (argc < 3)
|
||||
{
|
||||
std::cerr << "Usage: ./TV_Denoising_CUDA <input_image> <output_image> [<lambda>] [<iterations>]" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Read the input arguments
|
||||
std::string inputImagePath = argv[1];
|
||||
std::string outputImagePath = argv[2];
|
||||
float lambda = 0.02;
|
||||
int iterations = 10;
|
||||
|
||||
// Check if optional arguments are provided and update the corresponding variables
|
||||
if (argc >= 4)
|
||||
lambda = std::stof(argv[3]);
|
||||
if (argc >= 5)
|
||||
iterations = std::stoi(argv[4]);
|
||||
|
||||
// Read the input image
|
||||
cv::Mat image = cv::imread(inputImagePath, cv::IMREAD_GRAYSCALE);
|
||||
|
||||
// Check if the image was successfully loaded
|
||||
if (image.empty())
|
||||
{
|
||||
std::cerr << "Failed to read the input image." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Perform TV denoising
|
||||
TVDenoising(image, lambda, iterations);
|
||||
|
||||
// Display and save the denoised image
|
||||
cv::imshow("Denoised Image", image);
|
||||
cv::waitKey(0);
|
||||
cv::imwrite(outputImagePath, image);
|
||||
|
||||
return 0;
|
||||
}
|
77
src/tv_denoising.cu
Normal file
77
src/tv_denoising.cu
Normal file
@@ -0,0 +1,77 @@
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <device_launch_parameters.h>
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
#define BLOCK_SIZE_X 16
|
||||
#define BLOCK_SIZE_Y 16
|
||||
|
||||
__global__ void tvDenoisingKernel(float* image, int width, int height, float lambda, int maxIterations)
|
||||
{
|
||||
// Calculate the global thread index
|
||||
int col = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int row = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
int index = row * width + col;
|
||||
|
||||
// Declare shared memory arrays
|
||||
__shared__ float gradientX[BLOCK_SIZE_X][BLOCK_SIZE_Y];
|
||||
__shared__ float gradientY[BLOCK_SIZE_X][BLOCK_SIZE_Y];
|
||||
__shared__ float updatedImage[BLOCK_SIZE_X][BLOCK_SIZE_Y];
|
||||
|
||||
// Perform TV denoising iteratively
|
||||
for (int iteration = 0; iteration < maxIterations; ++iteration)
|
||||
{
|
||||
// Calculate the gradients using central differences
|
||||
gradientX[threadIdx.x][threadIdx.y] = image[index + 1] - image[index - 1];
|
||||
gradientY[threadIdx.x][threadIdx.y] = image[index + width] - image[index - width];
|
||||
|
||||
// Synchronize threads to ensure all gradient calculations are complete
|
||||
__syncthreads();
|
||||
|
||||
// Apply TV denoising update rule
|
||||
updatedImage[threadIdx.x][threadIdx.y] = image[index] + lambda * (
|
||||
gradientX[threadIdx.x][threadIdx.y] - gradientX[threadIdx.x - 1][threadIdx.y] +
|
||||
gradientY[threadIdx.x][threadIdx.y] - gradientY[threadIdx.x][threadIdx.y - 1]
|
||||
);
|
||||
|
||||
// Update the global image array with the updated pixel values
|
||||
image[index] = updatedImage[threadIdx.x][threadIdx.y];
|
||||
|
||||
// Synchronize threads to ensure all image updates are complete
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void TVDenoising(cv::Mat& image, float lambda, int maxIterations)
|
||||
{
|
||||
// Convert the image to float precision
|
||||
cv::Mat floatImage;
|
||||
image.convertTo(floatImage, CV_32F);
|
||||
|
||||
// Get image dimensions
|
||||
int width = image.cols;
|
||||
int height = image.rows;
|
||||
|
||||
// Calculate the number of blocks and threads per block
|
||||
dim3 blockSize(16, 16);
|
||||
dim3 gridSize((width + blockSize.x - 1) / blockSize.x, (height + blockSize.y - 1) / blockSize.y);
|
||||
|
||||
// Allocate GPU memory for the image
|
||||
float* d_image;
|
||||
cudaMalloc(&d_image, width * height * sizeof(float));
|
||||
|
||||
// Copy the image data from host to device
|
||||
cudaMemcpy(d_image, floatImage.ptr<float>(0), width * height * sizeof(float), cudaMemcpyHostToDevice);
|
||||
|
||||
// Invoke the TV denoising kernel
|
||||
tvDenoisingKernel<<<gridSize, blockSize>>>(d_image, width, height, lambda, maxIterations);
|
||||
|
||||
// Copy the denoised image data back from device to host
|
||||
cudaMemcpy(floatImage.ptr<float>(0), d_image, width * height * sizeof(float), cudaMemcpyDeviceToHost);
|
||||
|
||||
// Convert the denoised image back to the original data type
|
||||
floatImage.convertTo(image, image.type());
|
||||
|
||||
// Free the GPU memory
|
||||
cudaFree(d_image);
|
||||
}
|
Reference in New Issue
Block a user