chore(model gallery): add alibaba-nlp_tongyi-deepresearch-30b-a3b (#6295)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
committed by
GitHub
parent
e4ac7b14a3
commit
e94e725479
@@ -2623,6 +2623,21 @@
|
||||
- filename: Qwen3-Stargate-SG1-Uncensored-Abliterated-8B.i1-Q4_K_M.gguf
|
||||
sha256: 31ec697ccebbd7928c49714b8a0ec8be747be0f7c1ad71627967d2f8fe376990
|
||||
uri: huggingface://mradermacher/Qwen3-Stargate-SG1-Uncensored-Abliterated-8B-i1-GGUF/Qwen3-Stargate-SG1-Uncensored-Abliterated-8B.i1-Q4_K_M.gguf
|
||||
- !!merge <<: *qwen3
|
||||
url: "github:mudler/LocalAI/gallery/qwen3-deepresearch.yaml@master"
|
||||
name: "alibaba-nlp_tongyi-deepresearch-30b-a3b"
|
||||
urls:
|
||||
- https://huggingface.co/Alibaba-NLP/Tongyi-DeepResearch-30B-A3B
|
||||
- https://huggingface.co/bartowski/Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-GGUF
|
||||
description: |
|
||||
We present Tongyi DeepResearch, an agentic large language model featuring 30 billion total parameters, with only 3 billion activated per token. Developed by Tongyi Lab, the model is specifically designed for long-horizon, deep information-seeking tasks. Tongyi-DeepResearch demonstrates state-of-the-art performance across a range of agentic search benchmarks, including Humanity's Last Exam, BrowserComp, BrowserComp-ZH, WebWalkerQA, GAIA, xbench-DeepSearch and FRAMES.
|
||||
overrides:
|
||||
parameters:
|
||||
model: Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-Q4_K_M.gguf
|
||||
files:
|
||||
- filename: Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-Q4_K_M.gguf
|
||||
sha256: 1afefb3b369ea2de191f24fe8ea22cbbb7b412357902f27bd81d693dde35c2d9
|
||||
uri: huggingface://bartowski/Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-GGUF/Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-Q4_K_M.gguf
|
||||
- &gemma3
|
||||
url: "github:mudler/LocalAI/gallery/gemma.yaml@master"
|
||||
name: "gemma-3-27b-it"
|
||||
|
||||
45
gallery/qwen3-deepresearch.yaml
Normal file
45
gallery/qwen3-deepresearch.yaml
Normal file
@@ -0,0 +1,45 @@
|
||||
---
|
||||
name: "qwen3"
|
||||
|
||||
config_file: |
|
||||
mmap: true
|
||||
backend: "llama-cpp"
|
||||
template:
|
||||
chat_message: |
|
||||
<|im_start|>{{if eq .RoleName "tool" }}user{{else}}{{ .RoleName }}{{end}}
|
||||
{{ if eq .RoleName "tool" -}}
|
||||
<tool_response>
|
||||
{{ end -}}
|
||||
{{ if .Content -}}
|
||||
{{.Content }}
|
||||
{{ end -}}
|
||||
{{ if eq .RoleName "tool" -}}
|
||||
</tool_response>
|
||||
{{ end -}}
|
||||
{{ if .FunctionCall -}}
|
||||
<tool_call>
|
||||
{{toJson .FunctionCall}}
|
||||
</tool_call>
|
||||
{{ end -}}<|im_end|>
|
||||
function: |
|
||||
<|im_start|>system
|
||||
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
|
||||
{{range .Functions}}
|
||||
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
|
||||
{{end}}
|
||||
For each function call return a json object with function name and arguments
|
||||
<|im_end|>
|
||||
{{.Input -}}
|
||||
<|im_start|>assistant
|
||||
chat: |
|
||||
{{.Input -}}
|
||||
<|im_start|>assistant
|
||||
completion: |
|
||||
{{.Input}}
|
||||
context_size: 8192
|
||||
f16: true
|
||||
stopwords:
|
||||
- '<|im_end|>'
|
||||
- '<dummy32000>'
|
||||
- '</s>'
|
||||
- '<|endoftext|>'
|
||||
Reference in New Issue
Block a user