chore(model gallery): add alibaba-nlp_tongyi-deepresearch-30b-a3b (#6295)

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
This commit is contained in:
Ettore Di Giacinto
2025-09-17 09:22:19 +02:00
committed by GitHub
parent e4ac7b14a3
commit e94e725479
2 changed files with 60 additions and 0 deletions

View File

@@ -2623,6 +2623,21 @@
- filename: Qwen3-Stargate-SG1-Uncensored-Abliterated-8B.i1-Q4_K_M.gguf
sha256: 31ec697ccebbd7928c49714b8a0ec8be747be0f7c1ad71627967d2f8fe376990
uri: huggingface://mradermacher/Qwen3-Stargate-SG1-Uncensored-Abliterated-8B-i1-GGUF/Qwen3-Stargate-SG1-Uncensored-Abliterated-8B.i1-Q4_K_M.gguf
- !!merge <<: *qwen3
url: "github:mudler/LocalAI/gallery/qwen3-deepresearch.yaml@master"
name: "alibaba-nlp_tongyi-deepresearch-30b-a3b"
urls:
- https://huggingface.co/Alibaba-NLP/Tongyi-DeepResearch-30B-A3B
- https://huggingface.co/bartowski/Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-GGUF
description: |
We present Tongyi DeepResearch, an agentic large language model featuring 30 billion total parameters, with only 3 billion activated per token. Developed by Tongyi Lab, the model is specifically designed for long-horizon, deep information-seeking tasks. Tongyi-DeepResearch demonstrates state-of-the-art performance across a range of agentic search benchmarks, including Humanity's Last Exam, BrowserComp, BrowserComp-ZH, WebWalkerQA, GAIA, xbench-DeepSearch and FRAMES.
overrides:
parameters:
model: Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-Q4_K_M.gguf
files:
- filename: Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-Q4_K_M.gguf
sha256: 1afefb3b369ea2de191f24fe8ea22cbbb7b412357902f27bd81d693dde35c2d9
uri: huggingface://bartowski/Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-GGUF/Alibaba-NLP_Tongyi-DeepResearch-30B-A3B-Q4_K_M.gguf
- &gemma3
url: "github:mudler/LocalAI/gallery/gemma.yaml@master"
name: "gemma-3-27b-it"

View File

@@ -0,0 +1,45 @@
---
name: "qwen3"
config_file: |
mmap: true
backend: "llama-cpp"
template:
chat_message: |
<|im_start|>{{if eq .RoleName "tool" }}user{{else}}{{ .RoleName }}{{end}}
{{ if eq .RoleName "tool" -}}
<tool_response>
{{ end -}}
{{ if .Content -}}
{{.Content }}
{{ end -}}
{{ if eq .RoleName "tool" -}}
</tool_response>
{{ end -}}
{{ if .FunctionCall -}}
<tool_call>
{{toJson .FunctionCall}}
</tool_call>
{{ end -}}<|im_end|>
function: |
<|im_start|>system
You are a function calling AI model. You are provided with functions to execute. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools:
{{range .Functions}}
{'type': 'function', 'function': {'name': '{{.Name}}', 'description': '{{.Description}}', 'parameters': {{toJson .Parameters}} }}
{{end}}
For each function call return a json object with function name and arguments
<|im_end|>
{{.Input -}}
<|im_start|>assistant
chat: |
{{.Input -}}
<|im_start|>assistant
completion: |
{{.Input}}
context_size: 8192
f16: true
stopwords:
- '<|im_end|>'
- '<dummy32000>'
- '</s>'
- '<|endoftext|>'